jueves, 27 de octubre de 2011

MOTOR DE COMBUSTION INTERNA


Un motor de combustión interna, o motor a explosión o motor a pistón, es un tipo de máquina que obtiene energia mecanica directamente de la energia quimica de un combustible que arde dentro de una cámara de combustión. Su nombre se debe, a que dicha combustión se produce dentro de la máquina en si misma, a diferencia de, por ejemplo, la máquina de vapor.


Tipos principales
Clasificación de los alternativos según el ciclo
  • De dos tiempos (2T): efectúan una carrera útil de trabajo en cada giro
  • De cuatro tiempos (4T) efectúan una carrera útil de trabajo cada dos giros.
Existen los diésel y gasolina tanto en 2T como en 4T.

Aplicaciones más comunes
                                  Motor SOHC de moto de competición, refrigerado por aire, 1937 

Las diferentes variantes de los dos ciclos tanto en diésel como en gasolina, tienen cada uno su ámbito de aplicación.
  • 2T gasolina: tuvo gran aplicación en las motocicletas, motores de ultraligeros (ULM) y motores marinos fuera-borda hasta una cierta cilindrada, habiendo perdido mucho terreno en este campo por las normas anticontaminación. Además de, en las cilindradas mínimas de ciclomotores y scooters (50 cc), sólo motores muy pequeños como motosierras y pequeños grupos electrógenos siguen llevándolo.
  • 4T gasolina: domina en las aplicaciones en motocicletas de todas las cilindradas, automóviles, aviación deportiva y fuera borda.
  • 2T diésel: domina en las aplicaciones navales de gran potencia, hasta 100000 CV hoy día, tracción ferroviaria. En su día se usó en aviación con cierto éxito.
  • 4T diésel: domina en el transporte terrestre, automóviles, aplicaciones navales hasta una cierta potencia. Empieza a aparecer en la aviación deportiva
Historia:

Los primeros motores de combustión interna alternativos de gasolina que sentaron las bases de los que conocemos hoy fueron construidos casi a la vez por Karl Benz y Gottlieb Daimler.
Los intentos anteriores de motores de combustión interna no tenían la fase de compresión, sino que funcionaban con una mezcla de aire y combustible aspirada o soplada dentro durante la primera parte del movimiento del sistema. La distinción más significativa entre los motores de combustión interna modernos y los diseños antiguos es el uso de la compresión.

Estructura y funcionamiento

Los motores Otto y los diésel tienen los mismos elementos principales, (bloque, cigüeñal, biela, pistón, culata, válvulas) y otros específicos de cada uno, como la bomba inyectora de alta presión en los diésel, o antiguamente el carburador en los Otto.
En los 4T es muy frecuente designarlos mediante su tipo de distribución: SV, OHV, SOHC, DOHC. Es una referencia a la disposición del (o los) árbol de levas.

Sistema de arranque

Al contrario que los motores y las turbinas de vapor, los motores de combustión interna no producen un par de fuerzas cuando arrancan lo que implica que debe provocarse el movimiento del cigüeñal para que se pueda iniciar el ciclo. Los motores de automoción utilizan un motor eléctrico conectado al cigüeñal por un embrague automático que se desacopla en cuanto arranca el motor. Por otro lado, algunos motores pequeños se arrancan a mano girando el cigüeñal con una cadena o tirando de una cuerda que se enrolla alrededor del volante del cigüeñal.
Otros sistemas de encendido de motores son los iniciadores de inercia, que aceleran el volante manualmente o con un motor eléctrico hasta que tiene la velocidad suficiente como para mover el cigüeñal. Ciertos motores grandes utilizan iniciadores explosivos que, mediante la explosión de un cartucho mueven una turbina acoplada al motor y proporcionan el oxígeno necesario para alimentar las cámaras de combustión en los primeros movimientos. Los iniciadores de inercia y los explosivos se utilizan sobre todo para arrancar motores de aviones.

jueves, 20 de octubre de 2011

TIPOS DE FRENOS HIDRÁULICOS

Los materiales de fricción que se utilizan son conocidos como balatas y suelen ser piezas metálicas, semi-metálicas o de cerámica que soportan muy altas temperaturas y son los que crean la fricción contra una superficie fija, que pueden ser o tambores o discos; y así logran el frenado de el vehículo. Las balatas son piezas que sufren de desgaste y se tienen que revisar y cambiar en forma periódica.



  • Frenos de disco



  • Frenos de Tambores



  • Frenos de disco:
    Consisten en un disco metálico sujeto a la rueda, en cada una de sus caras están las pastillas, que son planas y, puestas en funcionamiento, aferran el disco con una acción de pinzas. La presión hidráulica ejercida desde el cilindro maestro causa que un pistón presione las pastillas por ambos lados del rotor, esto crea suficiente fricción entre ambas piezas para producir un descenso de la velocidad o la detención total del vehículo.
    En los frenos de discos, el disco puede ser frenado por medio de unas plaquetas (B), que son accionadas por un émbolo (D) y pinza de freno (C), que se aplican lateralmente contra él deteniendo su giro. Suelen ir convenientemente protegidos y refrigerados, para evitar un calentamiento excesivo de los mismos.

    'Sistemas de frenos hidráulicos en automoviles livianos'

    Los frenos de disco pueden ser de tres categorías: flotantes (la tuerca que sostiene las pastillas flota sobre cuatro sostenes de caucho, oscilando cada vez que se aplican los frenos), fijos (está bien sujeta por cuatro pistones, dos de cada lado del disco) o deslizantes (está suspendida por sostenes de caucho y se desliza al entrar en actividad). En la práctica, sus resultados son análogos. Además, para eliminar más rápido el calor resultante de la presión de las pastillas sobre las ruedas -en condiciones extremas de frenado se puede alcanzar los 260 grados de temperatura-, los discos pueden tener espacios huecos entre sus caras (se los llama ventilados).
    Pastillas de freno
    Las pastillas van colocadas dentro de una pinza dotada de un pistón como mínimo, que transforma la presión en fuerza. Las pastillas están diseñadas para producir una alta fricción con el disco. Deben ser reemplazadas regularmente, y muchas están equipadas con un sensor que alerta al conductor cuando es necesario hacerlo. Algunas tienen una pieza de metal que provoca que suene un chirrido cuando están a punto de gastarse, mientras que otras llevan un material que cierra un circuito eléctrico que hace que se ilumine un testigo en el cuadro del conductor.
    La potencia de frenado la determina la estabilidad del factor de fricción de las pastillas. El factor de fricción tiende a disminuir con el aumento de temperatura y velocidad. Al bajar el factor de fricción se prolonga la distancia de frenado.
    Frenos de tambor
    Constan de un tambor de acero o de hierro sujeto a la rueda de forma tal que gira simultáneamente, en su interior, junto al semieje, están las dos pastillas, separadas en su parte inferior por un tornillo de ajuste, y en su parte inferior por un cilindro de rueda. La presión hidráulica ejercida desde el cilindro maestro, causa que el cilindro de rueda presione las pastillas contra las paredes interiores del tambor, produciendo el descenso de velocidad correspondiente.
    En el interior de un freno de tambor van alojadas las zapatas (B), provistas de forros de un material muy resistente al calor y que pueden ser aplicadas contra la periferia interna del tambor por la acción del bombín (C), produciéndose en este caso el frotamiento de ambas partes.
    Como las zapatas van montadas en el plato (D), sujeto al chasis por el sistema de suspensión y que no gira, es el tambor el que queda frenado en su giro por el frotamiento con las zapatas.
     'Sistemas de frenos hidráulicos en automoviles livianos'
    El Desgaste (perdida de superficie de un material por acción mecánica) que se produce en las frenadas debido al rozamiento de las zapata contra el tambor, hace que aquellas queden cada vez más separadas de éste en posición de reposo, lo que supone un mayor recorrido muerto en la acción de frenado y el envío de mayor cantidad de líquido desde la bomba.
    Para corregir esto se debe de realizar un reglaje periódico de los frenos, que consiste en aproximar las zapatas al tambor lo máximo posible, pero sin que llegue a producirse el rozamiento entre ambos. Para realizar esta función se colocan en este tipo de freno unas excéntricas que limitan el recorrido tope de las zapatas hacia su posición de reposo. Mediante ellas se aproximan las zapatas al tambor cuanto sea necesario. La eficiencia de frenado depende de la calidad y condiciones del tambor.
    FADING
    Fading (Del verbo inglés fade: desmejorar, marchitar) : Expresión que se utiliza cuando los frenos de un vehículo pierden efectividad debido al sobrecalentamiento de los elementos que están en contacto (discos o tambores y pastillas), que pueden llegar a alcanzar temperaturas incluso superiores a los 500 grados centígrados
    El calentamiento excesivo de los frenos disminuye la adherencia del material empleado en los forros de las zapatas, al mismo tiempo que dilata el tambor, que queda más separado de ellas, por eso aparece el fenómeno llamado “fading”. Una vez que se enfrían, los frenos vuelven a funcionar normalmente. Este fenómeno aparece también cuando el líquido de frenos es de mala calidad y se vaporiza parcialmente en los bombines
    Antiguamente los autos tenían solo tambores, pero estos al acumular calor pierden efectividad, aún cuando algunos tambores tienen aletas de refrigeración para enfriarse más velozmente. Existen discos sólidos y ventilados, estos últimos por su complejidad de fabricación, son más costosos, pero mantienen más baja la temperatura durante la frenada y son más eficientes. Debido a la distribución de peso y su geometría, un auto debe frenar más adelante que atrás, Es por eso que al frente se encuentran los frenos de mayor efectividad y robustez. Los arreglos más comunes son los autos con frenos de discos adelante y tambor atrás. Los más costosos son los que utilizan discos en las cuatro ruedas. La mayoría de estos usan discos ventilados adelante y macizos atrás.

    FRENOS HIDRAULICOS

    En función de las exigencias y tipo de vehículo se emplean sistemas con distintas fuerzas de transmisión. En vehículos de turismo se emplean casi siempre sistemas de frenos hidráulicos (“frenos de pedal”) y frenos de estacionamiento (“frenos de mano”).
    Este sistema se basa en que los líquidos son prácticamente incompresibles y además de acuerdo con el Principio de Pascal, la presión ejercida sobre un punto cualquiera de una masa líquida se transmite íntegramente en todas direcciones. Al ejercer una fuerza con el pie en un émbolo pequeño el fluido la transmite y, según la relación entre las secciones de los émbolos, la amplifica. También cambia la dirección y el sentido la fuerza aplicada.
    Los frenos hidráulicos utilizan un fluido para transmitir la acción de frenado.
    El sistema requiere de:
    • Dispositivo de actuación: medio que permite al conductor generar y controlar la fuerza de frenado deseada.
    • Dispositivo de transmisión: transmite la fuerza de frenado del conductor a los frenos de rueda. Para reducir a un mínimo los riesgos de que falle este dispositivo de seguridad, el sistema de frenos de servicio se divide en dos circuitos independientes. De esta manera cuando falla uno de los circuitos de freno, se mantiene la efectividad del segundo
    • Disposición diagonal: cada circuito frena una rueda delantera y la rueda trasera diagonalmente opuesta. Este división se emplea principalmente en vehículos de tracción delantera
    • Disposición paralela: con cada circuito se frena un eje. El diseño de este tipo de división es lo más sencillo. Este se emplea preferentemente en vehículos con tracción trasera.
    • Frenos de rueda: son los que ejercen la acción de frenado al hacer fricción con la rueda y retardan el movimiento de las ruedas del vehículo, logrando reducir la velocidad o frenar el vehiculo hasta que se detenga completamente.
    • Debajo se muestra imagen de un sistema de frenos hidráulico:
    • Los frenos hidráulicos están divididos en dos tipos de sistemas fundamentales: los sistemas hidráulicos, propiamente dichos y los basados en materiales de fricción. En los sistemas hidráulicos, cuando el freno del vehículo es presionado, un cilindro conocido como “maestro” dentro del motor, se encarga de impulsar líquido de frenos a través de una tubería hasta los frenos situados en las ruedas, la presión ejercida por el líquido produce la fuerza necesaria para detener el vehículo.
    • Las pastillas ó materiales de fricción, suelen ser piezas metálicas o de cerámica capaces de soportar altas temperaturas. Estas piezas son las encargadas de crear fricción contra una superficie fija (que pueden ser tambores ó discos), logrando así el frenado del vehículo.

    COMPONENTES DEL SISTEMA DE FRENOS HIDRAULICOS